最新动态 WONDERFUL ACTIVITES
咨询微信: jccyou1998
高中

赶快收藏!4种数学思想,助你掌握整个高中数学!

日期: 2020-09-09
浏览次数: 19

很多同学对于数学向来都是敬而远之,但是其实数学最终的还是它的学习方法和学习思维。

大家只有掌握了正确的方式,在学习数学的时候才会觉得事半功倍。


1函数与方程的思想


函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。


2数形结合的思想


数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。


3分类讨论的思想


分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。


解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:


类型 1 :由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;


类型 2 :由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;


类型 3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;


类型 4 :由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。


类型 5 :由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。


分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维